
Lfl

Conformity Issues. of Ada Tasking arnd

the Effects of Ada Generics

on Object Code Size*..

THESIS

Robert H. Tippett
Captain, USAF

AFIT/GCS/ENG/89M-
3

DT[C,..:
IfELECTE
S3 MAR 11

DEPARTMENT OF THE AIR FORCE u
AIR UNIVERSITM

AIR FORCE INSTITUTE OF TECHNOLOGY

Wriglit-ratterson Air Force Base, Ohio

i a P~ b r o = bee wns 8 2 IQ

AFIT/GCS/ENG/89M-3

Conformity Issues of Ada Tasking and
the Effects of Ada Generics

on Object Code Size

THESIS

Robert H. Tippett
Captain, USAF

AFIT/GCS/ENG/89M-3

Approved for public release; distribution unlimited

ytop"

AFIT/GCS/ENG/89M-3

CONFORMITY ISSUES OF ADA TASKING AND

THE EFFECTS OF ADA GENERICS

ON OBJECT CODE SIZE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of Accession For

Master of Science in Computer Systems D'iC TTAB

Unannounced El
Jastification

By

Robert H. Tippett, B.S.,B.A. Distribution/
Availnbillty Codes

Captain, USAF !Avail and/or
Dist ISpecial

March 1989 A 1

Approved for public release; distribution unlimited

Ole

Table ofContents

Preface. ..

List of Figures.......................

List of Tables.....................................iv

Abstract...........................V

I. Background..........................1

Relevant Issues...3
Concurrent Processing...................5
Abstraction......................7

Problem..........................8
Fairness of Task Scheduling..............8
Implied Priority Using Nested Conditional Entry

Calls..........................8
Generics versus Explicitly*Typed Programs. 9

Problem Summary......................10
Current Knowledge.....................10
Assumptions..........................12
Scope...........................12
Standards...............................12
Approach/Method......................13
Materials and Equipment....................13

II. Literature Review..............................14

Introduction..............................14
Run-Time Environments...........................15

Run-Time Environments _.General.................15
Ada Run-Time Environments...............18

Concurrency Revisited...................20
Concurrency Model for Ada...............21
Concurrency and the Single Processor Machine . . .22
Real-Time Control and Task Scheduling in Ada . . .23

Conditional Entry Calls in Ada...............24
Use of Generics in Ada...................25

Types of Generic Units and Parameters.........26
Problems with Generics........................27

Software Testing Methods..................27
Compiler Testing Methods.....................28
Ada Compiler Validation Capability..........29
Summary................................31

III. Testing Ada Run-Time Task Scheduling............32

Introduction....................................3
Preliminary Design.....................32
Detailed Design . 3

Test 1 Design.....................35
Test 2 Design.....................37

Test 3 Design.....................38
Expected Results...................39

Statistical Methods to Test Fairness............41
Implementation Problems..................42

Results........................43

IV. Conditional Entry Calls and Implied Priorities 44

Conditional Entry Calls..................44
Example Use of Conditional Entry Call.........45

Nested Conditional Entry Calls...............46
Preliminary Design.....................47
Detailed Design......................47
Implementation......................49
Results..........................52

V. The Effects of Using Ada Generics
on Object Code Generation

54
Introduction............................54
Preliminary Design.....................54
Detailed Design.......................55

Selection of Test Code.................55
Implementation o.......... 5

Implementation Problems..................57
Results...........................58

VI. Conclusions and Recommendations.............60

Summary Conclusions.....................60
Part 1 Conclusions...................60
Part 2 Conclusions..................62
Part 3 Conclusions...................62

Recommendations........................63
Language Recommendations................63
Further Research Recommendations..........64

Conclusions..........................66

Appendix A: Test Data and Example Calculationso..........67

Appendix B: Program Output of Part 2.............84

Appendix C: Graphical Results of Part 3..............88

Bibliography...........................95

VITA................................98

Preface

The purpose of this thesis effort was basically threefold.

First, tests were developed and applied to a variety of Ada

compilers for testing the fairness of scheduling among equal

priority concurrent processes running on a single processor

machine. Second, Ada test code was developed to confirm the

ability of programmers to construct an implied priority scheme

using nested conditional entry calls. Third, a series of generic

programs and their explicitly coded counterparts were constructed

to evaluate tle differing effects on object code size between

each method of coding.

While these three topics seem somewhat independent, the

overall effort of this research was undertaken as a compiler

testing research topic. In that light, the continuity of the

work seems somewhat more plausible. Hence, the reader should

look at the whole as Ada compiler testing research and each part

as a specific problem in the area of Ada compiler testing.

I want to thank my thesis advisor, Major Jim Howatt, for his

patience and understanding during the course this research.

Also, I want to thank my committee members, Major Donna Herge and

Capt Will Bralick for their suggestions and assistance.

Most of all, I want to thank my wife Mary for her steady

support while I was frequently distracted by my work at AFIT. I

was able to complete this program because of her steadfast

support throughout the long months of study.

ii

List of Figures

Figure

1. Multiple Processor Computer System 6

2. Single Processor Computer System 6

3. Ada Run-Time System for Test 1 33

4. Ada Run-Time System for Test 2 33

5. Ada Run-Time System for Test 3 34

6. Task Body for a Task in TEST 1 36

7. Internal Structure of T6 in Test 2 38

8. Structure of Sibling Task in Test 2 39

9. Pseudo Code Representation for Busy Waiting 46

10. Block Diagram of Nesting Solution 48

11. Task Type CONTROLLER Specification 51

12. Pseudo Code Representation of CONTROLLER TASK 52

iii

List of Tables

Table Page

I. Test Results for Part 1 42

II. Calling Task Combinations to CONTROLLER 50

III. Generic Test Programs and Use 56

iv

AFIT/GCS/ENG/89M-3

Abstract

-The main purpose for this research is Ada compiler testing.

Specifically, the thesis was intended to explore three areas of

concern. First, tests were designed and implemented to try to

determine the fairness of Ada task scheduling algorithms within

the run-time system of Ada compilers. Next, an algorithm for

using the Ada conditional entry call in implied priority schemes

was developed. The algorithm was then coded and verified for

correctness. The third and final part of this research explored

the effect of using Ada generics on object code generation. Six

Ada programs were developed in both generic and explicit forms to

determine the extent of object code inflation when using

generic6.

Results of the work show that many individual compilation

systems approach the problem of task scheduling differently. The

evidence gathered showed that, for the test: u4-r in this part of

the work, the compilers were, in general, not fair to equal

priority tasks. While the tests were structured to ensure that

all tasks had equal priorities and equal duties to perform, they

were also designed with disregard for timing requirements on the

rendezvous. Hence, the unfairness of a compilation system may be

traceable to the large overhead involved in using the rendezvous.

It was determined that the Ada conditional entry call can be

nested to provide an implied priority scheme. Only three levels

v

of priority were implemented for this work, but that could easily

be extended to the range allowed by the compilation system.

The final area of research for this thesis explored Ada

generics. It was found that using generics does not necessarily

mean the object code generated will be larger than that of the

explicitly typed version of the same program. In fact, in some

instances, the explicit version generated more object code than

the generic. Therefore, the commonly held notion that generics

produce more object code is false. It is correct to say that

object code size depends on the source code, the compiler and the

particular machine.

vi

Conformity Issues of Ada Tasking and

the Effects of Ada Generics

on Object Code Size

I. Background

Since the late 1960s and early 1970s, software development

costs have spiraled upward at a critical rate tShumate 1984:10-

11; Booch, 1987:6-12; Woffinden, 1987). The impact of these

spiraling costs continues to plague current development efforts

in the private sector as well as in the Department of Defense

(DoD)(Port et al, 1988:142-154).

Once the problem of increasing software development costs

became well documented by DoD, a solution in the form of a

standardized programming language (Fisher, 1978:24-33), was put

forth by components of DoD software development organizations.

The new programming language was to incorporate all the best

features of modern languages. Also, it was to be designed with

particular emphasis on software engineering and code maintenance.

In other words, the new language was to provide a syntax and

semantic structure that necessarily enforced good engineering

practices in the development of new software. Additionally, it

was to be self-documenting (human readable) so life-cycle

maintenance costs could can be trimmed (Elbert, 1986:4-6; Booch,

1987:28-42).

In May 1979, a contract was awarded to the French company,

Honeywell/Honeywell Bull, for the development of the new

programming language. The new language, Ada, came into being in

July 1980 and included many features of the better languages of

the day (Booch, 1987:13-24; Gehani, 1987:xiii-xvii).

As with any new approach to problem resolution, a certain

amount of resistance to Ada was expected in one form or another.

The use of Ada in programming shops throughout the industry met

with it. share of resistance. Initially, most of the resistance

was in the form of sharp criticisms about the language's size and

complexity. World renowned software development experts lined up

to say the language was far too large and extremely complex

(Dykstra, 1978:21-26; Hoare, 1981:75-83).

Some experts even went as far as writing a language and

reference manual that completely satisfied the IRONMAN

speczification (DoD, 1977), yet remained comparatively small,

simple and concise (Shaw et al. 1978;36-581. This effort was in

response to the proposed languages submitted for the "fly-off" of

the contract. The authors of the TARTAN Ada challenged the four

companies, who were competing for the contract, to match the size

and lack of complexity they had achieved in their implementation

of Ada. Still others felt that Ada could be effectively down-

sized to make it more appealing to the user community (Ledgard,

1982:121-125).

More recently, other prominent experts have stepped forward

to defend Ada's size and complexity by virtue of the problem

space for which it was designed (Wichmann, 1984:98-103; Elbert,

1986:1-5; Booch 1937:Ch 1; Ada Board, 1988). The problem space,

namely large, real-time, embedded systems, is by nature large and

2

complex and these authors strongly defend Ada's size and

complexity.

Regardless of the arguments put forth on either side of the

issue, the relative worth of Ada as a viable answer to DoD's

software woes is academic. DoD now mandates the use of Ada in

Mission Critical Computer Resources (DoD, 1987:42-44). Hence, it

is now not a matter of whether to use Ada, but more a matter of

how to use it to solve problems in the large, real-time, embedded

systems of many DoD organizations.

Relevant Issues

Two of the more modern features of powerful programming

languages are concurrent processing and abstraction. Each of

these features exists to provide the framework from which the

software engineer constructs programs that adhere to accepted

principles of software development. Additionally, these features

allow users to exploit new system capabilities and new

development methodologies such as distributed processing and

object oriented design.

The capability for concurrent processing enhances a

language's usefulness because many modern programming

applications require simultaneous processing of data on a real-

time basis (Gehani, 1984:1-5; Elbert, 1986:376-380).

Y"ny prominent software engineers place abstraction at the

top of the list of software engineering principles (Jensen,

1979:275; Elbert, 1986:5-9; Booch, 1987:31). Therefore, if

3

abstraction is well supported by the programming language, then

software solutions to problems become more manageable because the

designer is not forced to spend inordinate amounts of time on the

details of machine implementation of the particular language.

Ada, with all its largeness and complexity, supports both

concurrent processing and abstraction. Concurrent processing,

the ability to simultaneously execute multiple paths of code from

within a single program, is available in Ada via its tasking

facility (DoD, 1983:Ch 9). Ada tasking can be used on multiple

processor systems to achieve true concurrent processing or on a

single processor system to implement pseudo-concurrency (pseudo-

concurrency means simultaneous execution of statements in a

program is impossible since only one processor exists--the

appearance of concurrency is given by virtue of the speed of the

CPU).

Abstraction is available in Ada through strong data typing

and the use of generics. Strong data typing (predefined and

user-defined) and generics alleviate constraints caused by rigid

sets of pre-defined data types and data structures. Abstraction

provides capabilities which give the programmer countless options

in regard to data types and data structures. The implementation

details of a particular type or structure are raised to a

sufficiently high level so that the programmer does not generally

need to concern himself with the inner workings of the machine

architecture. Thus, more time can be spent on solving the

4

problem at hand instead of wrestling with the details of the

particular hardware.

Concurrent Processing. Concurrent processing is a necessary

feature for most real-time embedded systems. Real-time embedded

processing means the data processing to be accomplished is part

of a larger system effort to process all data within certain

minimal time constraints. In a multiple processor system (Figure

1), central processing unit (CPU) time for a process is generally

available by virtue of dedicated processors for each sub-process

within the applications program.

P0 through Pn, shown in Figure 1, are separate processors

which perform specific functions in the overall system. Specific

sub-processes are allocated or scheduled to specific processors

within the overall system in order to accomplish the real-time

system requirements. The processor controller, P0, has the

explicit function of overseeing operation of the subordinate

processors in the system.

In a single processor system (Figure 2), however, the CPU

time must be allocated to each sub-process (SP) in turn. Hence,

in the single processor system used for real-time processing,

sub-processes (shown in Figure 2 as SP1..SPn) with higher

priority for completion may interrupt lower priority sub-

processes and cause the CPU to become exclusively dedicated to

completing the higher priority jobs. Obviously, this creates a

need for some sort of scheduling algorithms to ensure all sub-

5

processes are allocated some CPU time based on a predetermined

scheduling algorithm.

PO

Processor Controller

I I I I

P1 P2 P3 P4 P5 P6 Pn

Figure 1. Multiple Processor Computer System

Spi SP2 SP3 SP4 SP5

Single Processor System
I I i I I

SP6 SP7 SP8 SP9 SPn

Figure 2. Single Processor Computer System

The scheduling algorithms used by the Ada run-time

environment should provide some percentage of the total processor

time for each priority sub-process. If the scheduling algorithms

do not allow lower priority sub-processes to execute, starvation

will occur and the overall system requirements will not be met.

6

Abstraction. Abstraction, as mentioned above, is present in

Ada as strong typing of all data types. Each element identified

for use must be declared prior to its use within the context of

the language. Furthermore, data types and structures may be

specified in a generic sense. For generics, the particular

details of a structure are defined, but the data elements

themselves can vary. Specification of a generic sL~zrture in Ada

allows the software engineer to develop one piece of code which

will perform the same task on many different data types.

For instance, programmers spend significant amounts of time

writing routines which sort p'rticular groups of elements in a

certain order. Generic programs are open ended in the sense that,

given the characteristics of the data elements to be sorted, they

can sort uniquely different sets of data elements (each element

in the set must be the same type) without modifying the body of

the sort routine. This is a great time saver since the user can

merely instantiate the generic and process the different sets of

data elements without writing a complete new sort routine.

Concurrent processing and abstraction are two features of

Ada which allow the software engineer to apply accepted software

engineering principles to software development. Each of these

features of Ada still requires many refinements as the language

becomes an integral part of the mainstream development efforts

within DoD and private industry. As such, many topics for

research and development have been put forth to make Ada better

in the coming years.

7

Problem

There are wide ranges of areas for research within the Ada

language. Three of those areas, task scheduling, conditional

entry calls, and generics are briefly discussed in the following

sections.

Fairness of Task Scheduling. Current understanding of the

limitations of Ada tasking centers on the interpretation of the

Ada Language Reference Manual (LRM). The method of scheduling

tasks with equal priorities is not determined in the language

(DoD, 1983:9-17). The actual implementation of particular

scheduling algorithms is normally proprietary to the developer of

a specific Ada compiler. As such, it is hard to discern the

actual structure and implementation details of a given

compilation system.

Since Ada is designed to be machine independent, a method to

test different compilers for task scheduling fairness can be

constructed (Evans, 1987). The test can then be used to

determine whether a particular Ada compiler provides an equitable

amount of CPU time to equal priority tasks.

Implied Priority Using Nested Conditional Entry Calls.

Another issue of concern in Ada tasking (Evans, 1987) is the

ability of a programmer to impose a priority scheme on tasks

through the use of the conditional entry call (LRM, 1983:

Ch 9.7.2). By using nested conditional entry calls, programmers

should be able to specify the sequence in which tasks run.

8

It might be possible to nest the entry calls in a controller

task of some kind. Then, given the proper structure of the code

following the else option in the conditional entry call, an

artificial priority scheme could exist over the scope of the

nesting. To realize the priority scheme, the alternative after

the entry call should be just another conditional entry call.

Unique priorities should be available through the entry points of

the controller task.

Generics versus Explicitly Typed Programs. Finally, in the

area of abstraction, there is little or no information published

about the effects of using generic instantiations in place of

explicitly typed routines within an Ada program. At the center

of the issue is the question: given the space limitations

involved in some embedded applications programs (avionics

software in particular), does the size of object code generated

by generic programs force the designer to use explicitly typed

routines?

Stated more simply, the purpose of this portion of the

research is to determine the effects on object code size of using

generic programs, instead of the explicitly coded versions.

9

Problem Summary

Three independent problems have been put forth for

resolution by ASD/SCEL (Evans, 1987). They are as follows:

1. Is task scheduling on a single processor system
fair, based on equal priority tasks?

2. Can nested conditional entry calls in select
statements be used to produce an implied priority
scheme?

3. How do generic programs compare with explicitly
typed programs with respect to object code size?

Current Knowledge

Current knowledge about concurrent processing in Ada is

fairly extensive (Gehani, 1984; Elbert, 1986; Booch, 1987;

Shumate, 1988). However, specific knowledge concerning task

scheduling algorithms is somewhat splirse, since these algorithms

are proprietary to the vendors of compilers. Each vendor may

implement the scheduling algorithms differently to achieve the

required results. The vendor is given free rein to develop all

aspects of the Ada compilation systems. Once it is developed,

however, it must pass validation tests to be approved for use by

DoD components (Goodenough, 1981).

The Ada Compiler Validation Capability (ACVC) Implementors'

Guide is a document which enumerates tests for new Ada compilers.

Currently no tests exist in the document to determine the

fairness of task scheduling in a single processor systeic.

(Goodenough, 1986!Ch 9). Tests will be developed duiring this

research which may be used to determine the fairness of Ada

10

compiler task scheduling algorithms.

Some aspects of the conditional entry call have not been

addressed in the ACVC. For instance, is it possible to use the

conditional entry call to impose an implied priority scheme over

several levels of nesting? If such is the case, then a program

which provides this feature can be developed and used. The

program would process all entry calls based on the priority of

the particular entry point called. Again, no tests exist in the

ACVC Implementors' Guide to test this aspect of tasking

(Goodenough, 1986:Ch 9).

Although there is much speculation among software engineers

concerning the generation of large amounts of object code while

using generics in Ada, little is published on the subject.

Since the size of object code correlates directly to memory

requirements of the underlying machine, many professionals agree

that use of generics in systems that are memory space sensitive

(aircraft avionics to name one) is generally not good practice.

This mind set is based on speculation and some limited evidence

(Lyon, 1988; King, 1988). Little hard knowledge exists on the

effects of using generics versus explicitly typed programs and

this portion of research will establish a knowledge base across

several Ada compilers.

11

Assumptions

Assumptions made for this research effort are based on the

availability of compilers to run these various test suites.

Numerous compilers are available through the Air Force Institute

of Technology's (AFIT) computer center. Several more are

available from the ADA Language Control Facility (ASD/SCEL). The

exact number used during the research will depend on

implementation problems encountered as the effort progresses.

Ideally, the code generated for this research effort will be

extremely portable and few machine/language interfacing problems

are expected.

Scope

As mentioned above, the scope of the proposed study is

limited to developing and using methods for determining the

fairness of task scheduling, verifying the performance of nested

conditional entry calls against the desired result, and

understanding the effects of generic code segments versus

explicitly typed segments with respect to generation of object

code. Other issues concerning concurrent processing, select

statements, and abstraction in Ada are not addressed.

Standards

Since the LRM (DoD, 1983) is the standard that defines Ada,

it will be the source document for validity of Ada code written

as part of this research. Additionally, the ACVC Implementors'

12

Guide (Goodenough, 1986) will be used for determining the types

of tests which already exist and areas where tests may be needed.

Approach/Method

The specific approaches used to solve each of the above

problems are given in detail in Chapters 3, 4 and 5 respectively.

Materials and Equipment

All materials and equipment necessary for completing this

work were available through AFIT and ASD/SCEL.

13

II. Literature Review

Introduction

The overall purpose of this chapter is to discuss the

literature reviewed for the research of this thesis. The

information presented in this chapter is taken from many sources

and was gathered in order to gain a more complete understanding

of the problems presented in Chapter 1. Considerable amounts of

literature exist concerning nearly every aspect of Ada. Topics

of particular importance to this thesis effort are knowledge

concerning the Ada Run-Time Environment (RTE), Ada concurrency

and task scheduling, the use of Ada conditional entry calls, and

objec; code generation by Ada generics. Additionally, this

research effort falls under the heading of compiler testing so a

discussion of current compiler testing literature is included.

The material included in this chapter provides a framework

for understanding of the topics at hand. While the information

on RTEs and software testing may seem somewhat misplaced, it is

included for two reasons. The first reason for discussing these

areas is Tompleteness. Research into the area of Ada compilers

and programming could not proceed very well without a basic

understanding of the compilation systems and software testing.

Second, all these topics are pertinent to this research in

either a direct or an indirect sense. While software testing is

not directly relatee to any of the three problems of this thesis,

a general understanding of it is necessary. Hence, the five areas

14

mentioned in the first paragraph were studied to gain a basic

framework of knowledge about RTEs, Ada programming and software

testing.

Run-Time Environments

This discussion of a general framework of Run-Time

environments (RTE) is given to define the notion of a RTE as it

pertains to this thesis. Also, the distinction between the Ada

RTE and the Ada Run-Time System (RTS) is discussed to show the

subtle differences in the two. The main source for this

discussion is an article from the Ada Run-Time Environment

Working Group of SIGAda (AREWG, 1988:51-68).

Run-Time Environments in General. RTEs are a consequence of

the evolution of the man/machine interface of computer systems.

When computers were still fairly new, users interacted with them

in a very fundamental manner. The user simply wrote each and

every software application from scratch, based on the underlying

architecture of the machine at hand. This was a sufficient mode

of operation when the programs were small and the user was the

only person involved in developing the application. When larger

programs and development teams began to emerge, several new ideas

about the process of writing software became evident.

First, developers began to adopt certain conventions for

writing applications software. This, then, provided a baseline

level of reliability and interoperability between applications

when the conventions were used. The conventions were generally

15

concerned with utilization of the underlying machine architecture

and with standard sub-routine interfaces within applications

programs.

There was also a recognition that the bare machine did not,

in and of itself, provide enough abstraction in the

representation of some of the more common data structures.

Hence, conventions for the development of the most common data

structures were adopted to allow the details of implementation to

be suppressed. With these conveitions in force, the logical

evolution of these ideas lead to pre-written subroutines that

could be included in applications programs.

These ideas, namely coding conventions and pre-written

subroutines, formed the basis for the evolution of modern RTEs.

With time, several results of using the RTEs emerged.

Development of applications programs proceeded with much less

concern for the machine architectural structure. Consequently,

resources formerly spent on interfacing with the architecture,

went toward writing the best possible applications program.

Eventually, the process of supporting the above concepts

became automated. These automated tools became the present day

operating systems for general purpose computers (executives for

embedded computers) and programming language compilers.

Operating systems (and executives) provide the necessary

subroutines to control utilization of the machine resources. The

program language compilers provide the coding conventions for

16

data structures and the critical interface to the services of the

operating system.

Overall, the use of these automated features offers the

developer a much higher level of abstraction for the process of

writing applications programs. They also offer a consistent

interface to different users of the same environment. The

abstraction of the programming process and the consistent

environmental interface aid the applications developer, since

significantly less time is spent on the details of the machine

architecture and inconsistencies of the environmental interface.

The present day configuration of the general RTE is a hybrid

relationship between the underlying machine capabilities, the

operating system (or executive) and the program language

compiler. The RTE is dynamic in the sense that it can be

different for different combinations of the three components just

mentioned. For any given combination of the components, a change

in one may imply corresponding changes to the other two.

If, for example, the compiler used in a system is replaced

with a different manufacturer's product, a different set of

machine capabilities and operating system services may be

required. The existing machine and operating system may or may

not be able to meet the new requirements. Likewise, changes to

one of the other components can cause the structure of the system

to be adjusted to support the new configuration. In general,

using the RTE involves a cost benefit analysis. Namely, is the

degradation in the performance of a particular application

17

(caused by carrying the necessary elements of the RTE along)

offset by the convenience of using the RTE? In today's world of

program development, the answer is generally yes.

There are still specialized applications, particularly in

the embedded, real-time arena, which do not lend themselves to

the use of the RTE. The reasons for this are, generally,

associated with timing constraints that are not maintainable

within the RTE. In general, however, the RTE approach to

applications programming is widely accepted and practiced.

To this point in the development of the RTEs, the specific

tasks assigned to the three component parts of the RTE were

clearly delineated. Responsibility of each component within the

RTE could change, as mentioned above, but once the RTE was

adjusted to meet the new configuration requirements, each part

performed a specified number of services.

Ada Run-Time Environments. With the arrival of Ada on the

scene, the boundaries between the responsibilities of the RTE

component parts became somewhat blurred. Since Ada includes

concurrent programming and memory management capabilities, both

of which require the services of the operating system and

compiler, there needed to be more flexibility within the language

itself. Additionally, Ada does not require a specific operating

system or executive in order to generate applications programs.

Hence, the compilation system within the Ada RTE assumes the

burden of providing all support for developing applications

programs.

18

The Ada RTE is composed of the same three components of

other general RTEs. The difference is that the compilation

system in the Ada RTE chooses elements from the available

subroutines in the Ada Run-time library (RTL). The set of

subroutines from the RTL used by any particular Ada application

program is referred to as the run-time system for that

application. The RTS is the subset of the available subroutines

needed to successfully execute a particular application.

The compilation system is governed by the syntax and

semantics of the Ada source code submitted for compilation. Once

all the necessary machine and compiler requirements are met

(successful compilation), the object code is generated for the

target machine. Since Ada does not require a particular

operating system or executive, RTEs can exist on bare machines or

on machines with an operating system or executive on board.

With a bare machine, all services not provided by the

machine must be made available through the RTE for any

applications programs. Obviously, if more Ada features are

directly supported by the machine, a smaller RTE is required.

Conversely, if little support of Ada features is present, then a

much larger RTE will be needed. An obvious advantage to the bare

machine approach is the portability of the code.

On a machine with an executive, the RTE can work

cooperatively with the executive to support the Ada applications.

Varying degrees of cooperation can exist based on the

implementors decisions concerning the RTE capabilities. As

19

discussed above, support rendered by the operating system or

executive will decrease the responsibilities of the RTE. This

effectively reduces the size of the RTE. Reliance on the

executive is not without drawbacks, however. The biggest

drawback is that the generated object code will only run on

systems that are targeted for the compilation system/machine

combination.

This discussion of RTEs presented an overview of the RTE's

development and current configurations. The discussion of the

Ada RTE focused on the compilation system's responsibilities when

used on either a bare machine or a machine with an on board

executive. The difference between the Ada RTE and Ada RTS was

also pointed out. This information is the basis for all other

discussion of Ada RTEs and RTSs throughout this thesis.

Concurrency Revisited

In Chapter 1, a short discussion of concurrency spelled out

a general notion of concurrent processing. Basically, it is the

ability of a process to execute several statements at once. True

concurrent processing can occur only when sub-processes are

capable of executing regardless of the status of other peer sub-

processes. As long as the peer processes do not share any

information between them, they can run with no temporal

considerations of one another. If they do share information,

some scheme for ensuring non-corruption of the common information

must be implemented.

20

In general, true concurrency can only be achieved on multi-

processor systems. That is, the peer sub-processes are each

assigned to one of the processors in the system or they are

allocated across the available processors via some scheduling

scheme. The end result is true concurrent processing.

In the single-processor system, however, things are not

quite as nice. The CPU is shared by all sub-processes as needed,

so n equal priority sub-processes on a single-processor machine

only get 1/nth (n sub-processes) of the total CPU cycles.

Furthermore, the sub-processes are either directly or indirectly

affected by their peers. Each sub-process must wait for a peer

sub-process to finish with the CPU in order take its turn. The

time spent waiting is dead time for suspended sub-processes.

Many schemes exist for scheduling sub-processes into the CPU

(Peterson and Silberschatz, 1985:Ch 4). Of particular importance

to this work are the scheduling algorithms used in the Ada RTE to

schedule tasks on a single-processor machine.

Concurrency Model for Ada. The model for concurrent

processing in Ada is based on many of Hoare's desirable

properties of concurrent programming facilities (Hoare, 1978).

The following four properties of concurrent programming are

considered very desirable for a satisfactory implementation of

concurrency:

1) Security from Error: writing correct sequential code is
hard enough. With the use of concurrency come many new
problems associated with time-dependency errors.

21

2) Conceptual Simplicity: the structure of the concurrency
facilities should promote sound development techniques
and ease of understanding.

3) Efficiency: high-level language implementations of
concurrency must address timing and storage constraints.
If the high level language implementation is
inefficient, then it will not be used.

4) Breadth of Application: the concurrency facilities must
be suitable across a wide variety of applications.
High-level capability for hardware interfaces and
interrupts must be available so device drivers can be
written easily (Hoare, 1978:666-677; Gehani, 1984:29).

The main idea in Hoare's model of concurrency is that the

concurrent processes are sequential threads executing

simultaneously. When it becomes necessary for the threads (sub-

processes) to communicate, a rendezvous is made (via parameter

passing) between the calling and called sub-processes. Once the

exchange is complete (it should be as short as possible), the

rendezvous is terminated. Processing then reverts back to

parallel asynchronous sequential processing of the multiple

threads within the program (Hoare, 1978:666-677).

Concurrency and the Single Processor Machine. The

limitations of concurrent processing on the single-processor

system stem from the fact that each sub-process cannot execute at

will. If all sub-processes are to be considered peers with equal

priority, then no true concurrent processing, in the rigorous

sense, takes place. It can be argued however, fairly

convincingly (Howatt, 1988), that if the speed of the single-

processor system is fast enough and sub-processes are allotted

CPU cycles fairly, the appearance of concurrent processing can be

22

achieved. Given this argument, the boundary between true

concurrency and the pseudo-concurrency becomes blurred.

Real-Time Control and Task Scheduling in Ada. The preceding

discussion of concurrency was given in general terms. The

following discussion of real-time issues is given in the context

of single-processor implementations of Ada tasking. That is to

say, concurrency features are discussed as though they apply

equally well to single or multi-processor machine architectures.

While Ada is a very good language in general, it does not

appear to live up to some of its design goals. Particularly, the

capabilities of Ada, regarding real-time embedded systems, fall

short of the desired mark (Burns, 1987; Locke, 1987; McCormick,

1987). The Ada features used to support real-time processing are

the delay statement and the pragma priority.

Currently, the implementation of the delay statement

requires only that the delay be a specified minimum amount of

time. The actual amount of delay provided by the RTS of a

particular application may be significantly more than that

requested by the programmer (DoD, 1983:9-11; Booch, 1987:288).

This has obvious negative effects on the programmer's ability to

enforce strict timing constraints using the delay statement.

Since real-time applications are generally characterized by

some degree of predictability (Locke, 1987:51; McCormick,

1987:49), the inability of the delay statement to produce the

exact delay requested suggests that the delay statement is

inadequate for its designed intent.

23

Of equal concern to the real-time community is the manner in

which individual tasks are scheduled for execution by the RTE.

In a real-time system, it is desirable that the priority of any

given task be dynamic. That is, as the system responds to the

external world, the services provided by the real-time

arplication should be quickly modifiable (Locke, 1987:53). For

example, if a tactical fighter has several modes of operation,

each of which is substantially different in terms of the real-

time configuration of the on board computer, it is necessary that

the RTS be capable of making adjustments based on the mode of

operation.

The pragma priority in Ada does not allow the priority of a

task to change dynamically. Once it is set to some level in the

source code, it remains at that level. Task priorities cannot be

changed during the course of program execution (DoD, 1983:9-17;

Locke, 1987:53). The lack of this capability presents a problem

for RTSs, oecause they need to be able to modify the system

configuration based on external conditions.

Conditional Entry Calls in Ada

Section 9.7.2 of the LRM (DoD, 1983:14-15) spells out the

operation of the conditional entry call. Other references

(Elbert, 1986:422-423; Gehani, 1987:44; Shumate, 1988:50) also

dis, uss the proper use of the conditional entry call.

Basically, the conditional entry call is a mechanism which

provides a calling task with an alternative sequence of

24

executable statements if the called entry point is not

immediately available. Immediate availability for rendezvous is

discussed in the LRM (DoD, 1983:9-15, Para.4). The use of the

conditional entry call for this research exploits nesting to set

up an implied priority scheme. More details of this problem and

the proposed solution are presented in Chapter 4. Very little

information about the conditional entry call was found in the

literature.

Use of Generics in Ada

Generics in Ada provide the capability to create templates

of commonly used data structures for use in applications. The

basic idea behind generics is to increase programmer productivity

by using the templates for data structures that may appear many

times in the same program. Good examples of candidates for

generic usage are sort routines, incremental counters, and any

other data structures that occur repetitively throughout general

applications programs.

Some of the immediate consequences of using generics are

clearer code, smaller amounts of source code, better reliability

when using a proven generic and ease of modification. All these

consequences of using generics generally enhance the programmers'

productivity (Booch, 1987:243-244).

On a negative note, however, the use of generics can lead to

some undesired results. Namely, if the code is written for use

in a memory size sensitive application (avionics for example),

25

excessive object code generation by the Ada compilation system

may preclude the use of generics. Since Ada was developed for

use in conjunction with such systems, it is necessary to

determine the effects of using generics in place of explicitly

typed programs.

Types of Generic Units and Parameters. Generics are fairly

well understood in terms of how they are used. Most textbooks on

Ada devote a complete chapter to generics and their usage

(Elbert, 1986; Booch, 1987).

There are two basic units that can be created in the generic

format: subprograms and packages. Formal parameters used in

generic units fall into one of three categories: object

parameters, type parameters, and subprogram parameters. These

parameters are used in much the same way as normal parameters in

Ada.

It is also possible to have no formal parameters for a

generic unit. This just means all information about the generic

unit is already available in the generic specification.

A generic unit in the source code of a particular

application must have a corresponding instantiation to be of any

use. The instantiation of the generic notifies the compilation

system that the programmer wants to use the generic at the

specified place in the code. Once this is done, the generic

performs as if it were hard coded at the point of instantiation

(Elbert, 1986:268).

26

Problems with Generics. As mentioned above, generics do

have slight drawbacks in memory sensitive applications. Since

the object code resides in memory, it should be as small as

possible in these applications.

As mentioned in Chapter 1, there is a general consensus

among users that virtually every Ada compiler produces more

object code when generics are used in place of explicit routines

(King, 1988; Lyon, 1988). Several reports also indicate that the

use of generics will cause the object code size to expand

(Softech, 1986; ARINC, 1987).

The current solution to the problem of object code expansion

in code which uses generics is to write the code first without

regard to efficiency. Once it is correctly implemented, the

inefficient code segments are optimized as necessary to bring the

object code size down to acceptable limits (Softech, 1986:3-9).

This discussion of the use of generics in Ada was used to

point out some of their structural features and limitations. Of

critical importance to the real-time users of Ada is the

expansion of the object code when generics are used. This issue

is explored in more depth in Chapter 5.

Software Testing Methods

Compilers are programs written to automate the process of

communicating with the underlying machine architecture. Since

they are software programs, common practice dictates that they be

tested for proper performance. Software testing is professed to

27

be quite an important step in the development life cycle for

software products (Jensen, 1979:39; Pressman, 1987:467). A

successful integration of verification and validation throughout

the software development life cycle may be the difference between

overall project success or failure (Woffinden, 1987). Hence, the

only prudent approach to software testing is to use it throughout

the development cycle.

Many testing techniques are practiced by software

developers. The particular test methods used depend upon the

type of project, the resources available, and the management

philosophy regarding testing. While testing is a very important

part of development, it is often undertaken on the back end of

the project. As such, time is generally at a premium, and the

test team may only be able to perform cursory functional testing

of the software.

Testing general purpose applications software is a fairly

straightforward process. The reader is referred to Jensen

(Jensen, 1979:Ch 5), Howden (Howden, 1987) or Pressman (Pressman,

1987:Ch 14) for detailed explanations of verification and

validation techniques.

Compiler Testing Methods. Compilers are special purpose

computer programs. They materialize from the best efforts of the

developers to represent the syntax and semantic structure of a

particular language.

In general, most large programs will contain some errors

(Jensen, 1979:329; Pressman, 1987:468-469). Since compilers are

28

special purpose applications, it can be assumed that they, too,

will contain errors. As this is the case, testing methods to

uncover errors in compilers should follow accepted techniques as

described in the references mentioned above.

A complementary testing technique for testing compilers is

to perform regression testing as the compiler evolves (Aho,

1986:731-732). Regression testing can be viewed as an iterative

process of test case development. As the compiler matures

(incorporates new features), new tests are written to exercise

the newly added features. These new tests, plus all the old

tests, are successively run against the latest version of the

compiler. In this manner, the developer can check the

consistency of the compiler operation with that of its

predecessor. If, after some features are added (assuming no

changes to the original version except add-ons), the compiler

reacts incorrectly to some of the older tests, then the developer

knows that the current modifications are adversely affecting the

overall operation.

Ada Compiler Validation Capability. Regression testing

provides good consistency of the product through its development.

A good case in point is the use of the Ada Compiler Validation

Capability (ACVC) to validate Ada compilers for use in DoD.

Although use of the ACVC does not strictly constitute

regression testing, the ACVC test suite is constantly growing to

reflect more and more testing coverage. As the number of tests

in the ACVC increases, each compiler submitted for validation is

29

tested more and more thoroughly. Thus, a kind of regression

testing is occurring by virtue of the dynamic nature of the test

suite itself.

The approach used to validate Ada compilers in DoD is

outlined by Goodenough (Goodenough, 1981:57-64). The emphasis in

the ACVC is on development of many small tests to ensure that

each of the Ada language features is implemented correctly. One

difficulty with this approach (attributable to Ada's size) is the

shear magnitude of the number of tests. To date the ACVC test

suite contains over 3500 individual tests (Wilson, 1989).

Another difficulty, with using many small tests, is that the

effects of complex combinations of Ada features cannot be tested.

In 1984, McDonnell Douglas Astronautics Company began work on the

Common Ada Missile Packages (CAMP). CAMP was a research project

directed at determining the viability of reusing Ada parts

(generics) in real-time embedded systems. Initially, many

problems with validated compilers caused slow progress in the

work. It was not until 18 months after the start of the project

that any of the validated compilers were able to handle the

complex Ada code generated during the research. Understandably,

the response of the researchers to the ACVC was somewhat mixed.

They acknowledged that the ACVC efforts were commendable in

establishing a baseline standard for Ada compilers. They added,

however, that the test suite could not meaningfully test many of

the complex programs written as a part of their research. They

went on to suggest that the approach used to develop tests for

30

the ACVC be expanded to include tests of complex Ada code,

particularly in the area of generic usage (Herr and others,

1988:75-86).

In light of the comments by researchers at McDonnell

Douglas, some adjustments to the testing approach used in the

ACVC are needed. It appears that the ACVC tests lean toward

testing for an absolutely correct implementation of the language.

It does not test the possible complexities inherent in the Ada

language, particularly in the area of generic usage.

Summary

The literature reviewed for this thesis is by no means all

encompassing. Much more information about these areas exists.

This review provides a good baseline of information about the

proposed areas of study. It also provides a good starting point

for similar work in this vein.

31

III. Testing Ada Run-Time Task Scheduling

Introduction

As mentioned in Chapter 1, the main thrust of this chapter

is to develop and use tests which reveal the degree of fairness

of Ada task scheduling within the run-time environment on a

single-processor machine. Once the tests are developed and data

are gathered using available compilers and machines, statistical

tests will be used to assess whether a given RTS has a fair task

scheduling algorithm.

Preliminary Design

The approach used in solving this problem consists of

constructing small test programs to generate utput that gives

some insight into the nature of the underlying scheduling

algorithm. First, a series of n, equal priority tasks (Figure 3)

were used to determine how the RTE scheduler services autonomous

tasks. Each of the tasks, Tl..Tn, ran for the duration of the

test with no interruption from peers.

Next, as shown in Figure 4, n interdependent equal priority,

tasks were run to generate data on how they were schedulpd by the

RTE. Tasks T2..Tn all called separate entry points in Ti. The

Ada RTE uses a First-In-First-Out (FIFO) scheduling scheme for

servicing the calls queued on each entry point (DoD, 1983:9-9).

This scheduling scheme should produce a fairly uniform

distribution on the number of times each calling task rendezvous.

32

Ti T2 T3 T4 T5

I I I I I

ADA Runtime System Environment

T6 T7 T8 T9 Tn

Figure 3 Ada Run-Time System for Test 1

Ada Runtime System Environment

I I I T1
SIT I

T2 T3 T4 T5 T6 Tn

Figure 4 Ada Run-Time System for Test 2

In each of the above test cases the tasks were identical.

Integer counters within each task body were incremented each time

the task was executed. This provided insight about the amount of

processor time allocated to each task.

33

Finally, a combination of the first two tests was run to

generate data on the hybrid case (Figure 5). The intent here was

to determine the effects of the different task scheduling

requirements on the run-time scheduler. Intuitively, a

completely fair algorithm would allow an equal number of task

executions across all tasks on the system. This last test showed

whether this is the case for a given RTE. Any substantial

departure from a uniform distribution across all tasks might be

traceable to the overhead required for handling the rendezvous.

Ti T2 T3 T4 T5

iII AdaRuntime System Environment

T6

T7 T8 T9 T10 T11 Tn

Figure 5 Ada Run-Time System for Test 3

In general, if the integer counters showed a uniform

distribution across all tasks in a particular test, then it

could be inferred that the scheduling algorithms used were fair.

The fairness of each compiler was tested using data generated by

34

running the test programs on a specific compiler/machine

combinations.

Detailed Design

The implementation of the three tests described above was

fairly straight forward in Ada. Since Ada is fairly well defined

by the LRM (DoD, 1983), the overall structure of the tests were

determined from the preliminary design discussion. Each of the

three cases was derived from the conceptual view of the structure

presented by the figures above.

Test 1 Design. The idea behind Test 1 was to expose the

nature of the scheduling algorithm when tasks were executing, but

not calling other tasks. This test used autonomous tasks which

did nothing more than sit and spin. Each autonomous task

incremented an integer counter in its body. Figure 6 shows the

simple task body of one of the tasks in Test 1.

The idea here is to get all the tasks up and running, but

not start any of them counting until they are all active. The

WHILE loop in the task body facilitates this action. The flag

TASKACTIVE is set to TRUE in the main program after all tasks

are activated. This structure initially restricts all processing

within the tasks to execution of the null statements. When all n

tasks are ready, the flag is set and each one begins to increment

the appropriate counter. Thus, each task should have an even

chance at incrementing its counter during the duration of the

test (assuming of course the scheduler is fair).

35

The delay statements seen in the loops of the tasks became

necessary because most of the compilers went into infinite

looping without them. The purpose of the delay here is to allow

the RTS an opportunity to break from a loop and continue

processing. Without the delay statements in the loops, the RTS

simply allowed processing to continue in one of the running

tasks. Hence, no other processing was accomplished, and no data

was generated. Adding the delays created a break point from the

infinite loops and allowed the test programs to run to

completion.

task body NUMBER 1 is

begin

while TASKACTIVE - FALSE loop

delay DURATION'SMALL;

end loop;

loop

delay DURATION'SMALL;

COUNTER_1 := COUNTER_1 + 1;

exit when TASK-ACTIVE := FALSE;

end loop;

end NUMBER_1;

Figure 6 Task Body for a Task in TEST 1

36

Test 2 DesiQn. The crucial difference between Test 1 and

Test 2 was that, in Test 2, the effects of handling the

renaezvous came into play. Since there was some non-zero amount

of time involved in establishing the rendezvous, the Ada RTS must

compensate in the scheduling of the waiting tasks. Again,

intuitively, the fair scheduling algorithm should provide equal

time to equal priority tasks.

Figure 7 shows the internal structure of the called task for

Test 2. The structure of this called task is such that the

calling tasks access their own entry point. A running count of

the number of times the siblings rendezvous is maintained as

COUNTER_6.

The siblings (Figure 8) also track their individual counts

so they may be compared after execution of the test program.

Since the scheduling of the calling tasks within the select

statement is arbitrary (LRM, 1983:9.7.1) and all tasks have equal

priorities, any distribution other than uniform would be a

surprise.

37

loop

select

accept INCREMENTER_7 do

COUNTER_6 := COUNTER_6 + 1;

end INCREMENTER 7;

or

accept INCREMENTER_8 do

COUNTER_6 := COUNTER_6 + 1;

end INCREMENTER_8;

or

accept INCREMENTER_11 do

COUNTER_6 := COUNTER_6 + 1;

end INCREMENTER 11;

end select;

end loop;

Figure 7 Internal Structure of T6 in Test 2

Test 3 Design. Test 3 is the hybrid case of combining Tests

1 and 2. In other words, Test 1 tested autonomous tasks running

freely on the run-time system and Test 2 introduced the effects

of the rendezvous on the scheduling algorithm. Now, if these two

cases are combined, then the results will show any influence of

one on the other.

38

task body NUMBER_7 is

begin

while TASKACTIVE - FALSE

loop

delay DURATION'SMALL;

end loop;

loop

delay DURATION'SMALL;

COUNTER_7 :- COUNTER_7 + 1;

NUMBER_6.INCREMENTER_7;

exit when TASKACTIVE = FALSE;

end loop;

end NUMBER_7;

Figure 8 Structure of Sibling Task in Test 2

The design of this test case simply required combining Tests

1 and 2. Since there is no new information needed regarding the

structure of Test 3, discussion of it is not necessary. Figure

5, Ada Run-Time System for Test 3, provides all the conceptual

information needed to construct the test.

Expected Results. Prior to performing any analysis on data

generated by these test, some thought was given to expected

results in the context of what is known. The underlying

39

assumption for all of these expected results is that the RTS

provides each task an equal amount of CPU time.

The first test should show a uniform distribution over the

counters because each task is autonomous. The only influence on

the individual taskq is that of the run-time scheduler. Since

the tasks all have equal priorities, anything other than a

uniform distribution would be cause for concern. The scheduling

order of tasks with equal priority is not defined in the LRM

(DoD, 1980:9-16). However, if the distribution of the task

servicing is not uniform, then the scheduling order invalidates

the equal priority constraint, by definition.

The second test should also generate a uniform distribution,

because of the arbitrary nature of selection within the select

statement. Hence, on the single processor machine, some sort of

non-preemptive, equal priority scheduling scheme should be

evident.

The expected results of the third test are hard to

determine. If based entirely on the equal priority assumption,

then the expected results should show a good uniform

distribution. However, with the necessity to schedule equal

priority tasks based on two different relationships to the run-

time environment, the expected results are non-deterministic. If

the overhead for establishing the rendezvous is substantially

greater than that for switching between autonomous tasks, then

there is a good chance the distribution of counter values in Test

3 will not be uniform. Additionally, since there is no

40

rendezvous overhead for the autonomous tasks, all of them are

always ready for execut'on. This could also cause a skewing in

the distribution of counter values.

Statistical Methods to Test Fairness

The statistical method used to test the fairness of the

scheduling algorithms is the Chi-Square Goodness-of-Fit Test.

The hypothesis to be tested is as follows:

H0 : Underlying Population Distribution is uniform or

HA: Underlying Population Distribution is other than uniform.

The significance level,i , is to be taken at .05. This

value of t is sufficiently high to provide good confic nce if the

null hypothesis is rejected by the Goodness-of-Fit Test.

Each separate test was run 30 times to generate a pool of

data from which observed values for each of the cells were

calculated. The test sample was then used to test the hypothesis

stated above. Sample calculations on data taken from one of the

compilers are included in Appendix A. Additionally, all data

from all tested compilers are shown.

Table 1 shows results from all compiler/machine

combinations. The information in the columns under the heading

TEST I, TEST 2, and TEST 3 give the results of the statistical

testing. YES means the null hypothesis was rejected and NO means

it was not.

41

Table I Test Results for Part 1

MACHINE COMPILER OS TEST 1 TEST 2 TEST 3

Elexsi Verdix UNIX NO NO NO
6400 Ada 5.5
(ICC) BSD 4.3

VAX8650 DEC Ada VMS NO NO YES
(ASD/SCEL) Ver 1.5 Ver 4.7

VAX11/780 DEC Ada VMS NO NO YES
(ISL) Ver 1.4 Ver 4.6

VAX11/785 Verdix UNIX NO NO YES
(SSC) Ada 5.41 BSD 4.3

Z-248 JANUS Ada MS-DOS NO YES YES
Ver 2.02 Ver 3.2

Implementation Problems

Although the algorithms developed for use in this problem

were fairly straightforward, some of the resulting problems were

not anticipated. The most worrisome of the problems encountered

was a problem of the RTS's inability to manage CPU time among the

tasks. When the RTS started the first task, it never stopped it

to start anothei one. This was the case on the majority ot the

machines. The ELEXSI 6400 could handle the code but the

scheduling of tasks was severely skewed in favor of the

autonomous tasks. The autonomous tasks were executed thousands

more times than those with embedded calls. Since rendezvous

severely degraded the fairness of the scheduling algorithms in

the RTS, a work around to this problem was implemented. As

mentioned earlier, delay statements were added to the task bodies

42

to interrupt the task and allow the RTS to perform its scheduling

function.

Results. The overall conclusion to be drawn from this

portion of the research is that task scheduling is reasonably

fair when comparing like circumstances. In other words, if all

the tasks are autonomous, then the scheduling is fair. If all

the tasks rendezvous, then the scheduling algorithms perform

marginally well. But, if the hybrid case of task structures is

used, then most of the compilation systems fail to provide fair

scheduling in the strict sense.

It may be unreasonable to expect a RTS to schedule an

autonomous task and a task with rendezvous fairly, given the

overhead of the rendezvous. The results of these tests indicate

that, in most cases, it would not be a good assumpticn to presume

equal priority tasks of differing structures (autonomous or

dependent) will be scheduled fairly.

The complete test data from several available

compiler/machine/operating system combinations are contained in

Appendix A. Further conclusions and recommendations for this

portion of the research are contained in Chapter 6.

43

IV. Conditional Entry Calls and Implied Priorities

Conditional Entry Calls

As discussed in Chapters 1 & 2, the second area of interest

in this thesis is the conditional entry call. The complete

specification, syntax and semantic usage for this feature is

contained in the Ada LRM (DOD, 1983:Ch 9, 14-15). An example of

its use is given in the LRM to assist the reader in understanding

the basic operation of the feature. Further, and slightly more

illuminating examples, are available in Shumate's book (Shumate,

1988:121,520-531) and Elbert's book (Elbert, 1986:420-425).

From the standpoint of the Ada programmer, the conditional

entry call is a very useful feature when writing code for real-

time concurrent processing. When a call is made to a conditional

entry in a task, the Ada run-time environment responds by either

completing the rendezvous, if rendezvous is immediately

available, or by executing the "conditional" response if

rendezvous is not successful.

This conditional response is a single alternative, in the

form of an "else" option, which is executed in place of the

unsuccessful rendezvous attempt. The conditional entry call

allows a task to continue processing when the called task is

busy, instead of suspending it until the called task can

rendezvous.

A suspended wait can harm a system's performance in a real-

time, embedded environment. If time critical portions of the

44

software system depend on the task, which may not be available

because of suspended waiting, the real-time performance of the

overall system will be degraded. Thus, the avoidance of

suspended waiting enhances the overall system's capability to

perform in a real-time environment.

Example Use of Conditional Entry Call. As an example of the

use of the conditional entry call, Figure 9 shows a procedure

written in Ada that performs busy waiting very nicely (Elbert,

1986:423). This procedure prevents the calling task from being

suspended on a call to SEMAPHORE.WAIT. If the entry point

SEMAPHORE.WAIT is busy when called, the else path is selected and

the task repears the select statement until the rendezvous is

made. Conditional entry calls can be used for more than just

busy waiting. For instance, a calling task can return to

execution and try the entry point at some later time.

In the example of Figure 9, the call to entry point

SEMAPHORE.WAIT will be made only if rendezvous is immediately

available. Otherwise, the "null" statement in the else branch

will be executed. Since the only way out of the loop is for the

return statement to be executed, this structure provides busy

waiting for as long as the entry point into the called task is

busy.

45

procedure Admit is

begin

loop

select

SEMAPHORE.WAIT;

return;

else

null;

end select;

end loop;

end ADMIT;

Figure 9 Pseudo Code Representation for Busy Waiting

Nested Conditional Entry Calls

An issue of Particular interest to the Ada Validation

Facility regards the effects of using several levels of nested

conditional entry calls to imply a priority scheme over a set of

entry calls. In other words, can a programmer construct Ada

code, using the conditional entry call, that will provide a

priority scheme within the scope of the nesting and will the code

work as expected? The balance of this chapter will discuss my

resolution of this question and present a summary of the results

of testing the coded solution across several available compilers.

46

Preliminary Design

Of major importance in the design solution to this

particular problem is the functionality of the overall construct

and not the details of "what it can do in real terms". In other

words, the intent here is to show only that the algorithm

discussed above can be implemented to work correctly.

The solution to the problem will exhibit the following

characteristics:

1. Process entry calls based on ready queues of the
entry points.

2. Calls to the highest level will be processed until
they are exhausted. Then the next level down will
be processed.

3. Execution will stop only when no more calls are
queued at any entry point.

Detailed Design

The form of the algorithm used to solve this problem is

determined by the problem statement. That is, nested conditional

entry calls are used to create an implied priority scheme over

the scope of the nesting. The particular solution here calls for

the else options of each successively lower conditional entry

call to contain the next level select statement.

The use of the conditional entry call implies the use of

tasks. The code structure needed involves a controller task

which contains the entry points for the different level

priorities. Other tasks in some quantity, n, call the controller

task entry points to gain access to a particular priority level

47

operation. Figure 10 shows the general structure of the solution

in block diagram form. The entry points within the controller

task can be accessed using calls to HIGHEST, MIDDLE and LOWEST.

CONTROLLER TASK

Entry HIGHEST

Entry MIDDLE

Entry LOWEST

Figure 10 Block Diagram of Nesting Solution

Accessing particular priority levels correctly is sufficient

evidence that the algorithm works. The nested conditional entry

calls will be in a main loop and the ready queues for each entry

point will determine whether execution occurs.

When no more calls are queued at any entry points, the

alternative statements at the deepest level conditional entry

call determine what will occur next. Available options could

include delaying until more calls queue up, exiting the loop, or

even terminating the task. The test written to demonstrate the

48

even terminating the task. The test written to demonstrate the

solution uses the middle option, exiting the loop.

Implementation

The first step in implementing the solution was to decide

the coarseness of the available priority scheme. Since the

availability of a particular entry call within the rontroller

task is two-valued, either available for rendezvous or not

available for rendezvous, the total number of possible

combinations of entry points in the controller task is 2n, where

n is the number of entry points.

Additionally, the combinations of the binary representations

of entry points determines the number of test cases needed to

test the solution. For this solution, three entry points were

used. This meant a total of eight test procedures were needed to

exercise all combinations of entry point calls. The calling

tasks in each test were Jesigned to call a CONTROLLER entry point

and nothing more. The CONTROLLER then prints a message telling

what priority levl call was processed. Since the scheduling of

accepts in a select statement is arbitrary (LRM, 1983:9.7.1),

proper ordering of the output results sufficiently demonstrated

that the algorithm performed correctly.

Table II shows the various combinations of calls to

CONTROLLER by the other tasks in each program. Two extra

combinations were tested to determine the results of multiple

calls to a single level. An X in a column means a call was made

49

at that level. An 0 means no call was made at that level. The

structure of the calling tasks were identical and consisted only

of calls to entry points within CONTROLLER.

Table II Calling Task Combinations to CONTROLLER

Calls To CONROLLER Task

Test # HIGHEST MIDDLE LOWEST

1 x x x

2 x X 0

3 X 0 X

4 X 0 0

5 0 x X

6 0 X 0

7 0 0 X

8 0 0 0

9 xx 0 x

10 X 0 X X

The approach, as mentioned above, was to create a task type

CONTROLLER to be used for each test procedure. Figure 11 shows

the specification of the CONTROLLER task type. The three entry

points shown in Figure 11 are called by other tasks in the test

program according to Table II. The algorithm is constructed so

that calls to CONTROLLER.HIGHEST are answered until there are no

more calls for that entry point.

5o

task type CONTROLLER is

entry HIGHEST;

entry MIDDLE;

entry LOWEST;

end CONTROLLER;

Figure 11 Task Type CONTROLLER Specification

The task body of CONTROLLER is depicted in Figure 12 and

shows the general structure of the solution. Pseudo-code

representation of the solution shows the loop structure

containing the nested conditional entry calls. Here, the exit in

the terminal "else" option was used to end processing when no

more calls were pending.

The executable solution (each test procedure has an instance

of task type CONTROLLER) simply displays the status of the

current process with strategically placed Ada PUT statements.

These PUT statements allow the user to follow the progression of

the test procedure in near real-time from the terminal.

51

task body CONTROLLER is

> loop

> select

accept HIGHEST;

Internal else;
Loop

Structure > select

accept MIDDLE;
Level 1
Nesting else;

Level 2 F> select
Nesting

N accept LOWEST;

else;
Level 3
Nesting exit;

1> end select;

> end select;

> end select;

> end loop;

end CONTROLLER;

Figure 12 Pseudo Code Representation of CONTROLLER TASK

Results

Appendix B shows the results of running the test program.

Every compiler/machine/operating system combination used in this

section of the research produced the same results. A list of

52

these is also included in Appendix B. The implementation of this

solution performed correctly on every system combination tested.

The results show conclusively that nested conditional entry calls

can be used to enforce an implied priority scheme.

53

V. The Effects of Using Ada Generics

on Object Code Generation

Introduction

The main purpose of this chapter is to discuss the design

and implementation of a suite of test programs developed to

determine the effects of using Ada generic constructs on the

generation of object code. It is commonly accepted (Lyon, 1988;

King, 1988) that using generics causes some inflation in object

code size. This portion of the research will develop a test

suite that will show whether this common notion is indeed true.

The preliminary and detailed designs will be discussed in

the following sections. This discussion will outline the steps

taken to develop the test suite as well as explain the content of

the test programs. All results from the tests are consolidated

in Appendix C for easy reference. Finally, problems encountered

during the implementation phase and summary conclusions are

discussed in the last sections.

Preliminary Design

The problem statement in Chapter 1 stated the need to

determine the effects of using generics on the generation of

object code. Obviously, to test the effects of using generics,

both generic and explicit versions of the test programs should

exist. The generic version and the explicit baseline version

should perform identically and be very similar in structure.

54

Gehani (Gehani, 1987: 215) points out that explicit and generic

versions of Ada subprograms and packages differ only in their

specifications. Thus, translating an explicit version of a

program to its corresponding generic form should only require

altering the specification of the explicit version.

In general, then, the approach used to select the test code

was to choose existing solutions to common data structures

implementations. Code representing these various implementations

are widely available in the literature. Of particular interest

for this part of the research are those code segments containing

one or more of the types of generic formal parameters.

Detailed Design

There are several types of generic formal parameters. Each

of these parameter types can be used alone or in combination in

generics programs. Also, a generic program may have no

parameters. Therefore, the test programs in this test suite

cover each case of parameter usage. The reader is referred to

Elbert (Elbert, 1986: Ch 5) for an excellent discussion of the

generic formal parameter types.

Generic formal object, type, and subprogram parameters are

used in programs in the test suite. Also, included is a program

with no generic formal parameters. Thus, the test suite covers

the range of possible generic formal parameters.

Selection of Test Code. The selection of code to use in the

test suite was fairly simple. During the literature review for

55

this problem, many texts were found that examined the generic

facility of Ada (Elbert, 1986; Booch, 1987; Gehani, 1987;

Shumate, 1988). The programs in the test suite come from some of

the texts used for this review. Each of the programs chosen had

some attribute which made it useful for this study.

In general, the generic form of the program existed and the

explicit version had to be written. While this goes counter to

the preliminary design discussion, it proved to be more

productive to first find the generic version, then code the

explicit version.

Using this method for gathering test programs, six code

segments with generics were selected. Each of the generics used

can be seen in Table 2 with its corresponding generic formal

parameter type list.

Table III Generic Test Programs and Use

Program Name Generic Formal Parameter Usage

GENERIC1.A None COUNTERS

GENERIC2.A Object and Type STACKS

GENERIC3.A Type EXCHANGE

GENERIC4.A Type w/package QUEUE

GENERICS.A Type w/package SET OPS

GENERIC6.A Type/Subprogram SORT

56

Implementation. Once the code segments were chosen, the

explicit versions needed to be coded. Although the explicit

versions were written using the algorithms from the generic

versions, the translation was not a one to one mapping. If, for

example, the generic version contained formal parameters, those

parameters must be uniquely defined in the explicit version. A

generic formal type parameter can be defined for a wide range of

types, but the same usage in the explicit version requires that

the type used be uniquely determined.

When all the translations were completed, the test suites

were run on several available compilers (See Appendix C).

Problems during the implementation phase are discussed in the

following section.

Implementation Problems

Most of the problems encountered during the implementation

of these tests centered around the use of generics. Only simple

segments of code were used to cut down on the complexity of

implementing the solution. Even with simple code, the confusion

of using the generic formal parameters types was a major hurdle.

One major problem dealt with using a subprogram as a

parameter. With-the JANUS Ada compiler, there was no default

value on the use of visible functions. Unless the programmer

explicitly instructed the compiler to use the visible subprogram

(insert the box <> notation after the subprogram specification),

57

it looked for an overloaded operator with the same name. If it

was not found, an error was raised which indicated the subprogram

parameter could not be found.

This problem did not occur on the mainframe compilers.

Since the problem was unique to the PC compiler, the code was

modified to work on there. Then the same version was used on the

mainframes.

Results

As mentioned above, there is a notion among the users of Ada

that generics generate more object code. While this notion is

somewhat true, it is not completely true. In some cases, the

generic version does generate more object code. In other cases,

the opposite is true. In still others, both versions of the code

produce the same amount of object code.

Clearly, then, several different factors go into properly

answering questions about the generation of object code from

generics. How was the compiler designed to handle generics?

Does it insert the equivalent object code directly into the

object module or is a copy of the module maintained and inserted

as needed at run-time? Does the complexity of the generic cause

any inflation with regard to the final object code size? Do the

number and type of generic formal parameters affect the object

code generated?

These types of questions must be answered in the context of

a given compiler and machine architecture. It does not suffice

58

to say that generics cause inflation of object code size. More

correctly, the object code size varies depending upon the

particular Ada code, Ada compiler and machine used. It may be

the case that there is a relationship between the object code

sizes of the different versions. The object code sizes may be

inversely related as the number of instantiations and copies

increase.

As mentioned above, Appendix C contains all pertinent

information concerning the results of these tests.

59

VI. Conclusions and Recommendations

The conclusions and recommendations in this chapter are

derived from the results of this thesis. The conclusions are

based on the evidence gathered during the research and the

recommendations stem from unresolved issues/ideas encountered as

the research progressed.

Summary Conclusions

Each sub-section addresses one of the three problems studied

during the course of this research.

Part 1 Conclusions. This part of the research effort

centered on testing the fairness of task scheduling algorithms in

various Ada run-time systems. Tests were generated to highlight

the effects of a variety of tasking structures in all programs,

it was assumed all tasks had equal priority.

Using the Chi-Squared Goodness of Fit Test on the data

generated from these programs, consistent patterns of results

occurred. The data revealed that all the compilers (except

Verdix 5.5 on the ELXSI 6400) failed to provide fair scheduling

when the test program included both autonomous tasks and tasks

with rendezvous. In a strictly statistical sense, the null

hypothesis, that the scheduling algorithms were fair, was

rejected whenever the Ada RTS was faced with the hybrid test

case. This should be no real surprise, since the RTS overhead

60

for tasks containing rendezvous is substantially greater than for

autonomous ones.

The data from these tests seem to indicate that the tasks

closer to the top, in the select statement, are selected more

often than those further away. This then, gives some indication

that the selection scheme is not arbitrary, as defined in the

LRM.

The compilation systems did much better when the tests were

run using one of the other general test cases. Table I in

Chapter 3 summarized the results and showed that four of the five

compilers used were fair when using autonmous tasks exclusively.

In the case of the tasks with rendezvous, three of the five were

found to be fair.

It is interesting to note that by running the test code on

the ENCORE with Verdix Concurrent Ada Beta Version (B1.1), the

RTS only allowed rendezvous for two of the five accepts within a

select statement. This was verified by switching the order of

the accepts within the select statement and observing the output.

This particular machine/compiler combination always chose only

the first two entries after the select statement for rendezvous.

This, then, hints at a problem with the compiler, since all open

select alternatives should get some CPU time.

My overall impression of the Ada compilers used during this

research, in regard to task scheduling, was that the majority of

them still need work to insure that the fairness ivsue is

resolved. While it may not be possible to get complete fairness

61

in task scheduling, I think there is sufficient evidence here to

suggest more work can be done. I also believe that upcoming

revisions to the LRM should include more specific details about

these Chapter 9 implementation details.

Part 2 Conclusions. This part of the research was designed

to show that an implied priority scheme could be implemented

using the conditional entry call. It was shown that by nesting

conditional entry calls within select statements, an implied

priority scheme could be established.

Three levels of priority were established within the test

program. Then, tasks from within the test program called the

entry points at the different priority levels. Verification of

the program was done with textual output statements. These

statements traced the progress of the test program as it cycled

through various combinations of calls to the entries.

All results were as expected. Conditional entry calls

nested in select statements can generate the desired effect of an

implied priority scheme.

Part 3 Conclusions. By far the most challenging portion of

this research was Problem 3. This section of the research

ccncentrated oi deLermining if there was a difference in object

code size caused by using generic program structures.

Test programs in this portion of the work included generics

and explicit versions of those generics. Each was compiled and

loaded to produce executable versions. Each generic executable

was compared with the explicit version with respect to object

62

code size. It was determined that generics do not always produce

larger object programs. Some explicit versions of code caused

the generation of more object code than the corresponding

generic. Thus, the only conclusion to draw from this research is

that it is not categorically true that generics always cause

object code inflation. This refutes the commonly held notion

that generics do indeed inflate object code.

Recommendations

These recommendations come from thoughts about Ada and some

of the interesting possibilities for continued research. Ada is

continuing to mature and may some day actually become the

language it was designed to be.

Language Recommendations. The current version of the LRM is

intentionally vague on many implementation details. While some

flexibility is a must in language specifications, I think

defining the basic characteristics of language features is

crucial. Chapter 9 of the LRM (DOD, 1983:9.7.1,9.8) does not

define any restrictions on how the language should be implemented

to provide several particular features. In each instance, the

actual results are nondeterministic. The user is required to

write test code to uncover the actual performance characteristics

of a given compiler.

If the features were sufficiently defined and the compiler

validation suite contained tests which exercised the features,

the user could be more confident in the actual results.

63

Otherwise, the burden of proof of correctness shifts to the user,

who may have little or no understanding of how to test his code

for undocumented features.

I recommend that sufficient detail about a particular

language feature be included in the LRM. There are many

specifics already in the LRM, but there are also many that have

been omitted.

Further Research Recommendations. In the course of this

research many issues were raised. Some of the more interesting

are offered here as future research areas.

Before mentioning any of the areas for future research I

want to caution prospective researcher concerning research

involving many different systems and/or compilers. My experience

was that an inordinate amount of time had to be spent porting the

test cases to each different machine/compiler combination and

learning how each worked. Hence, my first recommendation to any

researcher is to try to scope your work to one

machine/compiler/operating system combination. This may not

provide a wide breadth of information, but the depth of

understanding of the single system will probably serve you better

in the long run.

Recommendations for future research in the area of task

scheduling deal with developing more sophisticated methods for

discerning the actual algorithms used. A researcher might, for

example, take a particular machine/compiler/operating system

combination and concentrate on determining how the RTS schedules

64

different combinations of different types of tasks. While the

compiler documentation should contain this information, many

times the burden of discovery is left to the user. Undocumented

features could also be noted. The point here is to find out as

much as possible about how the compiler and RTS handle the

overall chore of task scheduling.

Future research using the implied priority scheme algorithm

developed in the second part of this research might enhance the

algorithm to handle the problem of starvation of lower priority

requests to the controller task. Also, it would be constructive

to verify the effects of interleaving delays on the calls to the

entry points. Doing so would confirm the fact that the algorithm

does perform properly under more varying conditions.

There are many areas open for study in Ada. One of the more

promising areas is that of generics. Future research in the area

of generics and their use could come from studying object code

size in a different vein than was pursued here. This research

asserted conclusions about generics based on the generation of

object code. Another direction might be to study generic

structure and object code size together. It may be possible to

derive a model which could predict the object code size of a

program containing generics based on the structure of the

generics alone. The model could then be modified to provide the

prediction for other machines.

The Common Ada Missile Packages (CAMP), available at AFIT,

provide a wide spectrum of source code containing generics.

65

There is also a good range of complexity within the CAMP

software. This software and a good compiler (such as Verdix Ada

5.5) could be used to study and implement this topic. Results

from this study would further the understanding of generics and

their impact on embedded real time systems.

Conclusions

Working with Ada has been a bittersweet experience for me.

Being weaned into programming on Ada, I have enormous respect for

what it tries to be. Trying to master some of the complexities

of the language has taught me many things. Although Ada is still

relatively young, I feel it needs to mature more quickly in order

to fulfill its purpose in the embedded systems world. There also

needs to be a more concerted effort to get Ada into the

mainstream of the DoD embedded systems. Without a strong

commitment from the top, Ada will never receive the attention it

deserves.

66

Appendix A: Test Data and Example Calculations

This appendix contains sample statistical calculations on

some of the data gathered during the first part of this research.

Additionally, all data on each compiler/machine combination

tested is included. Each data set has a heading to identify the

compiler and underlying machine used during the test. Three

tests were performed on each compiler/machine combination.

The following example calculations were performed on the

data from the Verdix Ada compiler on the Elxsi 6400. The

calculations were performed on every data set in exactly the same

manner. Table 1 in Chapter 3 summarized the results of

statistical calculations on all the data gathered for these

tests.

Calculations consisted of determining the expected values of

a data set and then performing the Chi-Square Goodness-of-Fit

Test. The hypothesis tested for each data set was:

H0 : Sample Data from uniform population distribution.

HA: Sample Data not from uniform population distribution.

Using the first three data sets, which were generated on the

Verdix Ada/Elxsi 6400 compiler/machine combination, observed

values of each cell were calculated from a test sample of 30

program runs. Here the observed value for a particular cell is

just the arithmetic sum of all sample observations. The expected

67

value for each data set is just the total number of observations

in all cells multiplied by the probability of occurrence for the

individual cells. Cell probabilities for Test 1 and Test 2 were

.2, while the cell probabilities for Test 3 were .1. Then, using

the equation J(Observed - Expected)2 /Expected, the value of Chi-

Square was calculated.

The number of degrees of freedom used in calculating Chi-

Square for TEST 1, TEST 2, and TEST 3 were four, four, and nine.

With the significance level,s(, set at 0.05, the critical values

of Chi-Square for the three tests were 9.488, 9.488, and 16.919

respectively (Barnes, 1988:351). Thus, if the data of a

particular test yield a value of Chi-Square greater than the

critical value, then there was ample reason to reject the null

hypothesis. To not reject the null hypothesis meant that there

was insufficient evidence to discredit it.

References used to understand and present the statistical

information above included Kachigan (Kachigan, 1986:342-345,570)

and Barnes (Barnes, 1988:322-325,351).

The sample calculations for the Verdix Ada/Elxsi 6400

combination indicated that the null hypothesis couldn't be

rejected on any of the three tests. This then.suggested that the

scheduling algorithms in the Verdix Ada compiler were fair for

the test configuration developed. All the other compiler/machine

combinations tested caused the null hypothesis to be rejected on

at least one test. Table 1 in Chapter 3 summarized the results

of all calculations done for this appendix.

68

Verdix Ada/Elxsi 6400 Data (ICC)

TEST 1 Sample Data

TASK1 TASK2 TASK3 TASK4 TASK5

49 49 49 49 49

49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49

48 48 48 49 49
49 49 49 49 49
49 49 49 49 49
48 48 48 48 48
49 49 49 49 49
49 49 49 49 49
48 48 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
48 48 48 48 49
48 48 48 49 49
49 49 49 49 49
49 48 48 48 48
49 49 49 49 49
49 49 49 49 49
48 48 48 48 48
49 49 49 49 49
49 49 49 49 49

TEST 1 Expected Values

1464.8 1464.8 1464.8 1464.8 1464.8

TEST 1 Observed Values

1464 1463 1464 1466 1467

Chi-Squared - 0.007373

Since the critical value is 9.488, the null is not rejected.

69

TEST 2 Sample Data

TASK7 TASK8 TASK9 TASK10 TASK11

49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
48 48 48 48 48
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
48 48 48 48 48
49 49 49 49 49
47 47 47 47 48
44 45 46 45 45
49 49 49 49 49
48 48 48 48 49
47 47 47 48 48
49 49 49 49 49
49 49 49 49 49
48 48 48 48 49
44 44 44 44 44
49 49 49 49 49
47 48 48 48 48
49 49 49 49 49
48 48 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
49 49 49 49 49
48 48 48 48 48

TEST 2 Expected Values

1451.4 1451.4 1451.4 1451.4 1451.4

TEST 2 Observed Values

1448 1450 1452 1452 1455

Chi-Square = 0.018741

Since the critical value is 9.488, the null is not rejected.

70

TEST 3 Sample Data

TSK11 TSK12 TSK13 TSK14 TSK15 TSK17 TSK18 TSK19 TSK20 TSK21

49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 48 48 48 48 48
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 46 47 46 47 47

50 50 50 50 50 50 50 50 50 50
49 49 49 49 49 48 48 48 48 48
49 49 49 49 49 48 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 48 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
48 49 49 49 49 48 48 48 48 48
49 49 49 49 49 49 49 49 49 49
48 48 48 48 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
49 49 49 49 49 49 49 49 49 49
48 48 48 48 48 48 48 48 48 48
49 49 49 49 49 49 49 49 49 49

TEST 3 Expected Values

1466.6 1466.6 1466.6 1466.6 1466.6
1466.6 1466.6 1466.6 1466.6 1466.6

TEST 3 Observed Values

1468 1469 1469 1469 1470 1462 1465 1464 1465 1465

Chi-Square = 0.045275

Since the critical value is 16.919, the null is not rejected.

71

Verdix Ada/VAX 11/785 Data (SSC)

TEST 1 Sample Data

TASK1 TASK2 TASK3 TASK4 TASK5

397 398 399 399 399
347 347 348 344 348
331 328 332 331 329
296 297 298 299 299
363 361 363 363 363
323 323 324 321 321
370 372 372 370 371
315 315 314 317 317
336 335 335 334 335
335 335 337 337 337
371 374 374 372 374
398 398 400 399 400
233 235 234 235 235
165 166 164 166 165
106 107 108 108 108
152 150 150 152 151
165 165 163 166 166
237 237 238 239 238
337 333 336 338 335
355 353 356 356 357
396 393 397 397 396
397 396 397 398 396
380 381 379 381 380
396 397 396 398 399
316 314 -,18 316 318
294 294 293 293 295
330 331 331 331 331
178 178 178 178 178
261 262 262 260 263
341 340 341 342 340

TEST 1 Expected Values

9231.4 9231.4 9231.4 9231.4 9231.4

TEST 1 Observed Values

9221 9215 9237 9240 9244

Chi-Square = 0.069459

Since the critical value is 9.488, the null is not rejected.

72

TEST 2 Sample Data

TASK7 TASK8 TASK9 TASK10 TASK11

323 32. 322 322 322
288 289 288 289 289
272 272 272 272 273
271 271 271 271 271
258 258 258 259 258
282 282 282 282 283
267 267 267 268 268
272 271 272 273 273
228 228 228 227 229
243 244 243 244 244
214 214 214 214 215
255 255 256 253 256
279 279 279 278 278
258 258 258 258 257
268 267 268 268 268
248 248 249 249 249
237 237 237 238 238
297 296 297 297 297
271 271 271 271 272
292 292 292 292 293
283 282 283 284 283
241 242 241 242 242
236 236 237 235 237
280 281 281 281 281
303 304 303 303 304
294 294 294 293 294
296 296 296 297 297
261 261 261 261 262
253 253 253 253 252
294 295 295 294 295

TEST 2 Expected Values

8069 8069 8069 8069 8069

TEST 2 Observed Values

8064 3065 8068 8068 9080

Chi-S.'uare = 0.020325

Since the critical value is 9.488, the null is not rejected.

73

TEST 3 Sample Data

TSK11 TSK12 TSK13 TSK14 TSK15 TSK17 TSK18 TSK19 TSK20 TSK21

222 222 223 222 223 213 213 213 213 213
176 175 176 176 177 160 159 159 159 159
187 187 188 188 188 176 176 174 175 176
198 197 199 199 198 179 179 179 179 179
204 203 204 204 202 190 190 190 190 191
187 187 187 187 188 171 170 171 170 170
197 198 198 199 199 184 183 183 184 183
175 174 176 175 176 163 164 164 164 164
201 201 200 201 201 184 182 183 183 181
198 198 199 198 198 186 186 185 186 186
193 194 194 194 195 .179 179 178 178 180
187 190 189 190 191 166 166 167 166 166
194 195 195 195 196 177 175 176 176 176
193 192 193 193 194 177 177 177 178 176
176 177 176 177 177 156 158 157 157 156
211 211 212 211 212 194 193 193 193 194
207 207 208 207 208 193 192 193 193 194
207 207 207 208 208 189 189 188 189 189
166 167 166 167 165 155 154 155 154 155
201 202 202 202 201 183 185 184 184 185
83 83 83 83 8.' 78 78 78 78 78
74 75 75 74 75 67 67 67 66 67

102 102 102 102 102 90 91 90 91 91
181 183 184 184 184 164 164 164 164 163
214 215 214 215 215 193 193 194 193 193
206 204 208 206 208 189 188 190 189 190
220 221 219 221 220 202 203 204 204 205
223 224 224 224 224 209 210 209 210 210
230 230 230 230 230 210 210 210 210 209
180 179 180 181 181 167 167 167 167 167

TEST 3 Expected Values

5375.3 5375.3 5375.3 5375.3 5375.3
5375.3 5375.3 5375.3 5375.3 5375.3

TEST 3 Observed Values

5593 5600 5611 5613 5620 5144 5141 5142 5143 5146

Chi-Square = 100.3077

Since the critical value is 16.919, the null is rejected.

74

DEC Ada/VAX 8650 Data (ASD/SCEL)

TEST 1 Sample Data

TASK1 TASK2 TASK3 TASK4 TASK5

249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
245 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249

TEST 1 Expected Values

7470 7470 7470 7470 7470

TEST 1 Observed Values

7470 7470 7470 7470 7470

Chi-Square = 0.0

Since the critical value is 9.488, the null is not rejected.

75

TEST 2 Sample Data

TASK7 TASK8 TASK9 TASK10 TASK11

249 249 249 249 250
249 249 249 249 249
249 249 249 249 249
249 249 249 249 250
249 249 249 249 249
249 249 249 249 250
249 249 249 249 249
249 249 249 249 249
249 249 249 249 250
249 249 249 249 249
249 249 249 250 250
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249

249 250 250 250 250
249 249 249 249 249
249 249 249 249 250
249 249 249 250 250
249 249 249 249 249
249 250 250 250 2b0
249 249 249 249 249
249 249 250 249 250
249 249 249 249 249
249 249 249 250 250
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 250

TEST 2 Expected Values

7474.2 7474.2 7474.2 7474.2 7474.2

TEST 2 Observed Values

7470 7472 7473 7475 7482

Chi-Square = 0.011399

Since the critical value is 9.488, the null is not rejected.

76

TEST 3 Sample Data

TSK11 TSK12 TSK13 TSK14 TSK15 TSK17 TSK18 TSK19 TSK20 TSK21

249 249 250 250 250 250 250 167 167 167

249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167

249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 233 173 172 173
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167
249 249 250 250 250 250 250 167 167 167

TEST 3 Expected Values

6747 6747 6747 6747 6747 6747 6747 6747 6747 6747

TEST 3 Observed Values

7470 7470 7500 7500 7500 7500 7483 5016 5015 5016

Chi-Square = 1904.215

Since the critical value is 16.919, the null is rejected.

77

DEC Ada/VAX 11/780 Data (ISL)

TEST 1 Sample Data

TASKI TASK2 TASK3 TASK4 TASKS
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 250 250 250 250
249 249 250 250 250
249 250 250 250 250
249 249 250 250 250
250 250 250 250 250
249 249 250 250 250
249 249 250 250 250
249 249 250 250 250
249 249 250 250 250
249 249 250 250 250
245 249 250 250 250
249 249 250 250 250
249 249 249 249 250
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249

250 250 250 250 250
249 21? 249 249 250
249 249 249 249 249
249 249 249 249 249
249 249 249 249 249

TEST 1 Expected Values

7478.6 7478.6 7478.6 7478.6 7478.6

TEST 1 Observed Values

7A68 7474 7483 7483 7485

Chi-Square = 0.028508

Since the critical value is 9.488, the null is not rejected.

78

TEST 2 Sample Data

TASK7 TASK8 TASK9 TASK10 TASK11

248 248 246 246 246
249 249 248 248 248
249 248 247 246 246
249 249 247 247 248
249 248 247 247 247
249 248 247 247 247
247 247 247 247 247
249 249 247 247 248
249 247 247 246 247
249 247 247 247 247
248 248 246 246 247
249 248 247 247 247
249 248 246 246 247
249 249 247 247 248
249 248 256 246 247
249 249 247 247 248
250 248 248 248 247
249 248 247 247 247
248 248 248 246 247
249 249 247 247 248
249 247 247 .246 24)
249 249 248 247 248
249 247 248 248 247
249 248 247 247 247
249 247 247 247 247
249 248 247 248 248
248 247 246 246 247
249 248 247 248 248
248 248 247 247 247
248 248 247 247 247

TEST 2 Expected Values

7429.2 7429.2 7429.2 7429.2 7429.2

TEST 2 Observed Values

7463 7440 7420 7406 7417

Chi-Square = 0.273354

Since the critical value is 9.488, the null is not rejected.

79

TEST 3 Sample Data

TSK11 TSK12 TSK13 TSK14 TSK15 TSK17 TSK18 TSK19 TSK20 TSK21

249 249 250 250 250 201 196 197 197 197
249 249 249 249 250 205 197 196 196 197
249 249 249 249 250 240 187 186 186 186
249 249 250 250 250 203 196 197 197 197
247 247 247 247 247 229 183 183 183 183
249 249 250 250 250 200 197 197 197 198
249 249 250 250 250 235 189 189 189 189
249 249 250 250 250 239 188 187 187 188
249 249 250 250 .250 242 187 186 186 187
245 245 245 245 245 214 185 185 185 185
249 249 249 249 249 226 191 190 191 191
249 249 250 250 250 224 191 192 191 192
249 249 249 250 250 238 187 187 188 188
249 249 250 250 250 242 186 187 187 187
243 243 244 244 244 209 190 189 189 189
243 244 244 244 244 224 181 181 181 181
249 249 249 249 249 226 191 190 191 191
249 249 249 250 250 240 187 187 187 188
24$ 245 245 246 246 230 183 183 182 183
249 249 249 249 250 238 188 188 187 188
248 248 249 249 249 243 186 186 186 186
243 244 244 244 244 219 181 180 180 181
249 249 249 250 250 237 188 188 188 188
249 249 250 250 250 239 188 188 187 188
247 247 248 248 248 224 188 187 187 188
249 249 249 249 249 245 186 187 186 187
249 249 250 250 250 221 193 192 192 192
249 249 249 250 250 242 187 186 186 187
249 249 249 249 249 238 187 187 187 188
247 247 247 247 247 234 186 186 185 186

TEST 3 Expected Values

6668.3 6668.3 6668.3 6668.3 6668.3
6668.3 6668.3 6668.3 6668.3 6668.3

TEST 3 Observed Values

7437 7439 7452 7457 7460 6847 5650 5644 5641 5656

Chi-Square = 1086.642

Since the critical value is 16.919, the null is rejected.

80

JANUS Ada/Z-248 Data

TEST 1 Sample Data

TASKI TASK2 TASK3 TASK4 TASKS
24 24 24 24 24
25 24 24 24 25
25 25 25 24 25
24 24 24 23 24
24 24 24 24 24
24 24 24 24 25
25 24 24 24 25
24 24 24 24 24
24 24 24 24 25
24 24 24 24 24
25 24 24 24 25
24 24 24 24 24
24 24 24 24 24
24 24 24 24 25
24 24 24 24 25
24 24 24 23 24
25 24 24 24 25
24 24 24 24 25
25 24 24 24 25
24 24 24 23 24
24 24 24 24 25
24 24 24 24 25
24 24 24 24 24
24 24 24 24 24
24 24 24 24 25
25 24 24 24 25
24 24 24 24 24
24 24 24 23 24

25 25 25 24 25
24 24 24 23 24

TEST 1 Expected Values

724.6 724.6 724.6 724.6 724.6

TEST 1 Observed Values

728 722 722 717 734

Chi-Square - 0.236268

Since the critical value is 9.488, the null is not rejected.

81

TEST 2 Sample Data

TASK7 TASK8 TASK9 TASK10 TASK11

17 16 1 1 2
16 16 1 1 2
16 16 1 1 2
17 16 1 1 2
17 16 1 1 2
17 16 1 1 2
17 16 1 1 2
16 16 1 1 2
17 16 1 1 2
16 16 1 1 2
16 16 1 1 2
17 16 1 1 2
16 16 1 1 2
17 16 1 1 2
16 16 1 1 2
16 16 1 1 2
16 16 1 1 2
17 16 1 1 2
17 16 1 1 2
17 16 1 1 2
16 16 1 2
17 17 1 12
16 16 1 1 2
16 16 1 1 2
16 16 1 1 2
16 16 1 1 2
17 16 1 1 2
16 16 1 1 2
16 16 1 1 2
16 16 1 1 2

TEST 2 Expected Values

218.8 218.8 218.8 218.8 218.8

TEST 2 Observed Values

493 481 30 30 60

Chi-Square -1098.916

Since the critical value is 9.488, the null is rejected.

82

TEST 3 Sample Data

TSK11 TSK12 TSK13 TSK14 TSK15 TSK17 TSK18 TSK19 TSK20 TSK21
17 17 17 17 16 5 4 1 1 2
17 17 17 17 16 5 4 1 1 2
17 17 17 17 16 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
17 17 17 17 16 5 4 1 1 2
18 18 17 17 17 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
18 17 17 17 17 5 4 1 1 2
17 17 17 17 16 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
17 17 17 17 16 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
18 17 17 17 17 5 4 1 1 2
17 17 17 17 16 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
17 17 17 17 16 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
1'7 17 17 17 17 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
18 18 17 17 17 5 4 1 1 2
17 17 17 17 16 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2
17 17 17 17 17 5 4 1 1 2

TEST 3 Expected Values
293.7 293.7 293.7 293.7 293.7

293.7 293.7 293.7 293.7 293.7

TEST 3 Observed Values

514 512 510 510 501 150 120 30 30 60

Chi-Square - 1624.937

Since the critical value is 16.919, the null is rejected.

83

Appendix B: Program Output of Part 2

This appendix contains the output from the program written

for part two of this research. The output of the program records

execution of the implied priority scheme for 10 combinations of

available entry points and calls made. The following list

contains the compiler/machine combinations that this test was

successfully run on:

COMPILER OPERATING SYS MACHINE

Verdix 5.5 UNIX BSD 4.3 ELXSI 6400
Verdix 5.41 UNIX BSD 4.3 VAX 11/780
DEC Ada 4.6 VMS 1.4 VAX 11/780
DEC Ada 4.7 VMS 1.5 VAX 8650
JANUS 2.02 MS-DOS 3.2 Z-248

Asterisks mark the points in the tests where entry point calls
were accepted and executed.

Output TEST_1

Ready to accept call at HIGHEST Priority!
Executing HIGHEST Priority Request!
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Executing MIDDLE Priority Request!
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
Executing LOWEST Priority Request!
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
No calls pending! Execution TERMINATED!!

84

Output TEST_2

Ready to accept call at HIGHEST Priority!
Executing HIGHEST Priority Request!
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Executing MIDDLE Priority Request!
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
No calls pending! Execution TERMINATED!!

Output TEST_3

Ready to accept call at HIGHEST Priority!
Executing HIGHEST Priority Request!
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
Executing 'OWEST Priority Request!
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
No calls pending! Execution TERMINATED!!

Output TEST_4

Ready to accept call at HIGHEST Priority!
Executing HIGHEST Priority Request! *
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
No calls pending! Execution TERMINATED!!

Output TEST_5

Ready to accept call at HIGHEST Priority
Ready to accept call at MIDDLE Priority!

Executing MIDDLE Priority Request! *
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
Executing LOWEST Priority Requestl
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
No calls pending! Execution TERMINATED!!

85

Output TEST_6

Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!

Executing MIDDLE Priority Request! *
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
No calls pending! Execution TERMINATED!!

Output TEST_7
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!

Executing LOWEST Priority Request! *
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
No calls pending! Execution TERMINATEDI!

Output TEST_8

Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!

No calls pending! Execution TERMINATED!!

Output TEST_9

Ready to accept call at HIGHEST Priority!
Executing HIGHEST Priority Request! *
Ready to accept call at HIGHEST Priority!
Executing HIGHEST Priority Request! *
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
Executing LOWEST Priority Request! *
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
No calls pending! Execution TERMINATED!!

86

Output TEST_10

Ready to accept call at HIGHEST Priority!
Executing HIGHEST Priority Request!
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
Executing LOWEST Priority Request!
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
Executing LOWEST Priority Request!
Ready to accept call at HIGHEST Priority!
Ready to accept call at MIDDLE Priority!
Ready to accept call at LOWEST Priority!
No calls pending! Execution TERMINATEDX!

87

Appendix C: Graphical Results of Part 3

This appendix contains graphical data on the results of

comparing object code generated by generic programs and their

explicitly coded counterparts. The data used to generate the

graphs is also included. Each graph represents the results from

a single compiler/machine combination and six test programs.

Verdix Ada/Fr,EXSI 64n0 Data (Bytes)

GENERIC EXPLICIT

1. 67884 67042
2. 69981 69171
3. 63355 63374
4. 71664 70795
5. 80264 79416
6. 65405 65414

Verdix Ada/VAX 11/785 Data (Bytes)

GENERIC EXPLICIT

1. 22528 19456
2. 24576 21504
3. 18432 18432
4. 24576 24576
5. 28672 27648
6. 19456 19456

DEC Ada/VAX 11/780 Data (Bytes)

GENERIC EXPLICIT

1. 2861 2818
2. 2712 3707
3. 2500 2467
4. 4813 4730
5. 6652 6684
6. 2450 2418

88

DEC Ada/VAX 8650 Data (Bytes)

GENERIC EXPLICIT

1. 2349 2305

2. 3224 3809

3. 2500 2467

4. 4813 4730

5. 6652 6684

6. 2450 2420

JANUS Ada/Z-248 Data (Bytes)

GENERIC EXPLICIT

1. 20600 10669

2. 23167 16677

3. 22439 13848

4. 23874 19069

5. 25301 26317

6. 22618 14720

89

Ic J x I a" E BL X E 0

6t::7eri Icvs Exp Ict I~ ec oc Sze

100

GENER C

i~1EX L T

0 20
0 r

1 2 3 4 5 6

To-st Programs

Figure 1 Verdix Ada/ELXSI 6400 (ICC) Results

90

Ver Ix A --a'v A XI S~ E5

Ge rer fc vs Exp~<Oic Coc 0 (-1

GENEP C

20-___

10-

0 j "A~J

1 24

7est Prrngrms

Figure 2 Verdix Ada/VAX 11/785 (SSC) Results

DEC Ada / VAX 1-!/-,2O

Dererc v s Ex< iIcK i jc t Cce S 74-

IGENEP

1 COOI

2 3~1r 4 5 6

Test Programs

Figure 3 DEC Ada/VAX 11/780 (ISL) Results

92

C c"Vx35

Gerneri c vs E, p c i Oj ect Co(- 5z EE

1000-_ __ _ _

5 6

Figure 4 DEC Ada/VAX 8650 (ASD/SCEL) Results

93

L:IJNU e~ e -,1_

30~

20- _

JT-I* DK MS

Figure 5 JANUS Ada/Z-248 Results

94

Bibliography

Ada Board. "Ada Board Report: Executive Summary, February 1988",
Ada Letters, Volume VIII, Number 4:47-68, July/August 1988.

Aho, Alfred V. Compilers: Principles, Techniques, and
Tools. Addison-Wesley Publishing Company, Reading, Mass.
1986.

AREWG. "A Framework for Describing Ada Run-Time Environments",
Ada Letters, Volume VIII, Number 3:51-68, May/June 1988.

ARINC. "Guidance for Using the Ada Programming Language in

Avionics Systems", Draft 2 of Project Paper 613,

Aeronautical Radio Inc., Annapolis, Maryland. May 1987.

Booch, Grady. Software Engineering with Ada (Second Edition).
Menlo Park CA: The Benjamin/Cummings Publishing Company
Inc., 1987.

Burns, A. "Real Time Ada Issues", Ada Letters, Volume VII,
Number 6:43-46, (Fall C7).

Department of Defense. Requirements for High Order Computer
Programmicg Language (IRONMAN). 1977.

Department of Defense. Military Standard: Ada Programming
Language Reference Manual. MIL-STD-1815A. Washington:
Department of Defense, 22 January 1983.

Department of Defense. Use of Ada in Weapons Systems. DOD
Directive 3405.2. Washington: Government Printing Office,
30 March 1987.

Dykstra E.W. "DOD-i: The Summing Up," Sigplan Notices, Vol 13,
Number 7:21-26, July 1978.

Elbert, Theodore F. Embedded Programming in Ada. VanNostrand

Reinhold Company Inc., 1986.

Evans, Bobby. Head, Ada Language Control Facility. Official

Correspondence. Proposed Thesis Topics. July 1987.

Fisher, David A. "DOD's Common Programming Language Effort,"
Computer, Vol II, Number 3:24-33, March 78.

Gehani, Narain. Ada Concurrent Programming, Prentice Hall Inc.,
Englewood Cliffs, New Jersey, 1984.

UNIX Ada Programming, Prentice Hall Inc., Englewood

Cliffs, New Jersey, 1987.

95

Goodenough, John B. "The Ada Compiler Validation Capability,"
Computer, Vol 14, Number 6:57-64, June 1981.

Goodenough, John B. The Ada Compiler Validation Capability
Implementors' Guide: Version 1. SofTech, Inc., Waltham, MA,
December 1986.

Herr, Christine S. et al. "Compiler Validation and Reusable Ada
Parts for Real-Time Embedded Applications," Executive
Summary of Common Ada Missle Packages, Ada Letters
Volume VIII, Number 5:75-86, Sept/Oct 1988.

Hoare, C.A.R. "Communicating Sequential Processes'"
Communications of the ACM, Vol 21, Number 8:666-676,
Aug 1978.

Hoare, C.A.R. "The Emperor's Old Clothes,"
Communications of the ACM, Vol 24. Number 2:75-83, Feb 1981.

Howatt, Capt James. Assistant Professor, Department of
Electrical Engineering, Air Force Institute of Technology
(AU). Personal Interview. Wright-Patterson AFB OH.
4 May 1988.

Howden, William E. Functional Program Testing and Analysis,
McGraw-Hill Book Company, New York, 1987.

Jensen, Randall W. and Charles C. Tonies. Software Engineering,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 197q.

King, Capt Dave. Computer Resources System Engineer, ASD/YFEA.
Telephone Interview. Aeronautical Systems Division, WPAFB,
OH. 26 Sep 1988.

Ledgard Henry F. and Andrew Singer. "Scaling Down Ada (Or Towards
A Standard Ada Subset)", Communication of the ACM, Vol 25,
Number 2:121-125, February 1982.

Locke C. Douglass and David R. Vogel. "Problems in Ada Run-time
Scheduling," Ada Letters. Volume VII, Number 6:51-53 (Fall
1987).

Lyon, Major Bob. Chief, Core Avionics Division, ASD/YFAC.
Telephone Interview. Aeronautical Systems Division, WPAFB,
OH. 19 Sep 1988.

McCormick, Frank. "Scheduling Difficulties of Ada In the Hard
Real-Time Environment", Ada Letters. Volume VII, Number 6:
49-50 (Fall 1987).

96

Peterson James L. and Abraham Silberschatz. Operating Systems
Concepts (Second Edition), Addison-Wesley Publishing
Company, 1985.

Pressman, Roger S. Software Engineering: A Practitioners
Approach (Second Edition), McGraw-Hill, Inc., New York.
1987.

Port, Otis et al. "The Software Trap: Automate or Else",
Business Week. Number 3051: 142-154 (9 May 1988).

Shaw, Mary et al. "TARTAN: Language Design for the IRONMAN
Requirement: Reference Manual", SIGPlan Notices, Volume 13,
Number 9:36-58, September 1978.

Shumate, Kenneth C. Understanding Ada, Harper and Row
Publishers, New York, 1984.

-Understanding Concurrency in Ada, McGraw-Hill Book Company,
New York, 1988.

Softech. "Program Office Guide to Ada Edition 1", Softech Inc.,
Waltham, MA., September 1986. Electronic Systems Division
TR-86-282.

Wichmann, Brian A. "Is Ada Too Big? A Designer Answers the
Critics", Communications of the ACM, Volume 27, Number 2:98-
103, February 1984.

Wilson, Steven. Tecnical Director, Ada Language Control
Facility, ASD/SCEL. Telephone Interview. Aeronautical
Systems Division, WPAFB, OH. 15 Feb 1989.

Woffinden, Duard S., Assistant Professor, Department of
Electrical Engineering, Air Force Institute of Technology
(AU). Lecture Notes. Wright-Patterson AFB OH. Fall 1987.

97

VITA

Captain Robert H. Tippett

.. he enlisted in the U.S. Navy. He

was honorably discharged from active duty in 1978. He entered

Miami University at Oxford, Ohio in 1979 to study Aeronautical

Science. He enlisted in the Ohio Air National Guard where he

served from 1979 to 1984 as a Radio Communications Technician.

In 1983 he received the degrees of Bachelor of Science in

Aeronautics and Bachelor of Arts in Aeronautics/Mathematics. He

re-entered active duty in February 1984 and was subsequently

commissioned as a second lieutenant through the U.S. Air Force

Officer Training School at Lackland AFB, Texas. He then attended

Pennsylvania State University on an Air Force Institute of

Technology Scholarship and received the degree of Bachelor of

Science in Meteorology in 1985. From May 1985 to May 1987 he

served as a Wing Weather Officer at Detachment 26, 26th Weather

Squadron, Grissom AFB, Indiana. There he supported the missions

of the 305th Air Refueling Wing and 305th Combat Support Group.

Currently a student, in residence, at the Air Force Institute of

Technology studying for a Masters Degree in Computer Science from

the Department of Electrical Engineering.

98

L ASSFI
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE FormApproed

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCASSIFIM

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public relase,

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/89M-3

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If app ikble)

School of Engineering AFIT/=

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, CH 45433-6583

Sa. NAME OF FUNDING /SPONSORING eb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DoD Ada Validation Facility A.V/SCEL

tc ADDRESS (COty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Wright-Patterson AFB, OH 45433-6583 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Cassiflcation)

Conformity Issues of Ada Taskinc, and the Effects of Ada Generics on Object Code Size
(UNCLASIFIED)

12. PERSONAL AUTHOR(S)
Robert H. Tippett, Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 11S. PAGE COUNT
MS Thesis FROM TO 1989 March 17 98

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Carpiler Testing, Cariputer Program Verification,

12 05 Carputer Progranming, Capilers

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Thesis Chairman: James W. Hawatt, Major, USAF

Assistant Professor of Electrical Engineering and Carputer Science

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0] UNCLASSIFIED/UNLIMITED E SAME AS RPT. C3 DTIC USERS LLASSIFIM

22a. NAME OF RESPONSiBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Major Jams W. HIatt 513-255-6913 AFIT/EG ,

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCI.SIFIED

19. -cent- This thesis deals with c iler testing and progran verification.
Specifically, three areas are addressed concerning Ada copilers. First, several
capilers are assessed to determine the fairness of their task scheduling algorithmxs.
Next, conditional entry calls are used to develop an implied priority scheme within
a program. Finally, the effects of using generics is explored. The effects of generics
on object code size is determined.

The first tests dealing with Ada tasking examine the effects of the rendezvous
on the fairness of the scheduling algorithms. Three different tests are used to assess
the effects of the rendezvous. Autoncuous tasks are run by themselves, as are tasks with
rendezvous. Then these two cases are cuibined to test there effects on the ompiler
operation.

The second test is desinged to show that an implied priority scheme can be implemented
using the conditional entry call. The calls are nested three levels deep to confirm
the operation of the designed algorithm.

Th1e final test explores the effects of using generics on object code size.
Test programs are coded with generics and explicitly. Then the capiled programs
are carpared with respect to object code. The results are presented in tables and
graphically.

The results of these three tests showed that most carpilation systems do not
perform well when the hybrid test case for testing scheduling fairness is used. Also,
it was shown that the implied priority--scheme could be implemented with nested conditional
entry calls. Finally the research showed that it is not necessarily the case that
Ada generics cause the inflation of object code size.

